William Gregory

- Postdoctoral research associate at Princeton University (NOAA GFDL)
- Research interests include sea ice prediction and modeling
- Research methods include machine learning, data assimilation
- PhD in Arctic sea ice predictability and machine learning

william-gregory.github.io	Tel: +1 (609) 627 - 9659	wg4031@princeton.edu

Education

09/2017 - 11/2021	PhD Climate Science, University College London	Pass
• Thesis: "Machine lea Supervisors: Dr M. 7	arning tools for pattern recognition in polar climate science". Isamados & Prof J. Stroeve	
• 4-year funded position	on through the London NERC Doctoral Training Partnership	
$\frac{09/2013-09/2014}{$	MSc Petroleum Geophysics, Imperial College London	Distinction
09/2010 - 09/2013	BSc Geology with Geophysics, University of Leicester	1st class

Employment History

01/2022 — Present Postdoctoral Research Associate, Princeton University (NOAA GFDL)

- Member of consortium: Multi-scale Machine Learning in Coupled Earth System Modeling (M²LInES)
- Developing neural networks which can correct state-dependent sea ice model errors
- Implementing neural networks into ice-ocean and fully coupled climate models
- Past responsibilities include organizing biweekly group meetings within M²LInES, and leading monthly sub-group meetings on data assimilation

11/2014 - 07/2017 Depth Imaging Geophysicist, Petroleum Geo-Services Ltd

- Created 3D sub-surface velocity models for seismic data processing, using tomographic inversion methods
- Heavily involved with day-to-day project management, including leading progress meetings with clients, compiling status reports and updating Gantt charts
- Trained new staff in depth-imaging theory and implementation
- Created staff user-guides related to in-house processing algorithms

Peer-reviewed Publications

 Gregory, W., Bushuk, M., Zhang, Y., Adcroft, A., Zanna, L. 2024. Machine learning for online sea ice bias correction within global ice-ocean simulations, *Geophysical Research Letters*, 51, e2023GL106776. https://doi.org/10.1029/2023GL106776

- Bushuk, M., ..., **Gregory, W.**, et al. 2024. Predicting September Arctic sea ice: a multi-model seasonal skill comparison, *Bulletin of the American Meteorological Society* https://doi.org/10.1175/BAMS-D-23-0163.1.
- Zhang, Y., ..., Gregory, W., et al. 2023. Improvements in September Arctic sea ice predictions via assimilation of summer CryoSat-2 sea ice thickness observations, *Geophysical Research Letters*, 50, e2023GL105672. https://doi.org/10.1029/2023GL105672
- Gregory, W., Bushuk, M., Adcroft, A., Zhang, Y., Zanna, L. 2023. Deep learning of systematic sea ice model errors from data assimilation increments, *Journal of Advances in Modeling Earth Systems*, 15, e2023MS003757. https://doi.org/10.1029/2023MS003757.
- Nab, C., Mallett, R., **Gregory, W.**, et al. 2023. Synoptic variability in satellite altimeter-derived radar freeboard of Arctic sea ice, *Geophysical Research Letters*, 50, e2022GL100696. https://doi.org/10.1029/2022GL100696
- Gregory, W., Stroeve J., Tsamados, M. 2022. Network connectivity between the winter Arctic Oscillation and summer sea ice in CMIP6 models and observations, *The Cryosphere*, 16, 1653–1673. https://doi.org/10.5194/tc-16-1653-2022
- Gregory, W., Lawrence, I.R., Tsamados, M. 2021. A Bayesian approach towards daily pan-Arctic sea ice freeboard estimates from combined CryoSat-2 and Sentinel-3 satellite observations, *The Cryosphere*, 15, 2857-2871. https://doi.org/10.5194/tc-15-2857-2021
- Gregory, W., Tsamados, M., Stroeve, J. and Sollich, P. 2020. Regional September sea ice forecasting with complex networks and Gaussian processes. *Weather and Forecasting*, 35(3), pp.793-806. https://doi.org/10.1175/WAF-D-19-0107.1

Publications in review

- Gregory, W., MacEachern, R., Takao, S., Lawrence, I.R., Nab, C., Deisenroth, M.P., Tsamados, M. 2024. Scalable interpolation of satellite altimetry data with probabilistic machine learning, *Nature Communications* https://doi.org/10.21203/rs.3.rs-4209064/v1.
- Balwada, D., ..., **Gregory, W.**, et al. 2024. Learning machine learning with Lorenz-96, Journal of Open Source Education. https://doi.org/10.22541/essoar.170365239.95851488/v1

Outreach

- Project development co-chair for Climatematch Academy, 2024.
- Content developer and reviewer for Climatematch Academy, 2023.
- Presented history of Equality, Diversity and Inclusion (EDI) progress at GFDL during internal division workshop
- Delivered science outreach presentations to secondary-school and A-level students at King Solomon Academy school, London

Funding Awarded

YEAR	AWARD	PROJECT	AMOUNT
2017 - 2021	London NERC DTP Research	PhD in polar climate science	£7000
	Training Support Grant		

Prizes and Awards

YEAR	AWARDING BODY	AWARD	RESULT
2019	University College London	Departmental travel support grant	Awarded £100
2013	Imperial College London	Best group-based field development	Winner
		project presentation	
2013	British Petroleum	MSc Scholarship	Awarded £25,000
2013	University of Leicester	Shell Geophysics Prize	Winner $\pounds 250$
2012	University of Leicester	Award for Academic Excellence	Awarded £50

Teaching Experience

DATE	ROLE	INSTITUTION:	STUDENTS
		COURSE	
Jan–Sept 2022	Co-supervised MSc student	UCL: Dept of Com-	MSc student
	project	puter Science, Cen-	
		tre for AI	
Jan–Apr 2020	Assisted practical sessions and	UCL: Geodynamics	3rd year un-
	grading		dergraduates
Jan–Apr 2020	Assisted practical sessions	UCL: Ocean Physics	3rd year un-
			dergraduates
Oct–Dec 2018/19	Delivered and graded practical	UCL: Foundations of	1st year under-
	sessions	Physical Geoscience	graduates
Oct–Dec	Delivered practical sessions and	UCL: Introduction	1st year under-
2018/19/20	pre-recorded material for online	to Matlab	graduates
	learning		

Selected Conference Presentations

DATE	EVENT	PRESENTATION TITLE
Apr 2024	EGU General Assembly	Towards improving numerical sea ice predictions
		with data assimilation and machine learning
Feb 2024	AGU Ocean Sciences	Machine learning for online sea ice bias correction
		within global ice-ocean simulations
Apr 2023	EGU General Assembly	Fast interpolation of satellite altimetry data with
		probabilistic machine learning
Apr 2023	EGU General Assembly	Deep Learning of systematic sea ice model errors
		from data assimilation increments
Dec 2022	AGU Fall Meeting	Deep Learning of systematic sea ice biases from
		data assimilation increments
May 2022	$M^{2}LInES$ annual con-	Learning systematic model error from data assimi-
	ference	lation increments
Apr 2021	EGU General Assembly	A Bayesian approach towards daily pan-Arctic
		radar freeboards
Apr 2020	EGU General Assembly	Random walks through climate networks: Sea ice
		prediction with Bayesian inference

Invited Presentations

DATE	EVENT	LOCATION	PRESENTATION TITLE
May 2024	US Climate Modeling Summit	Princeton, USA	Informing earth system models with
			coupled data assimilation
Apr 2024	CMCC Seminar	Bologna, Italy	Improving sea ice prediction capa-
			bilities with data assimilation and
			machine learning
Nov 2022	NYU Courant Seminar	New York, USA	Deep learning of systematic model
			biases from data assimilation incre-
			ments
Apr 2022	EGU General Assembly	Virtual	Machine Learning tools for pattern
			recognition in polar climate science.
Nov 2021	UCL Centre for AI	London, UK	Improving Arctic sea ice predictabil-
			ity with Gaussian processes
Mar 2020	Government Digital Service	London, UK	Machine Learning in climate science

Selected Training

DATE	COURSE	PROVIDER	LOCATION
Jan 2019	Arena One: Gateway Workshop.	University College London	London
	Teacher Training		
${\rm Jan}~2018$	Statistics in Environmental Science	NERC DTP	London

Technical or Other Skills

• Competent computer programmer in Python, familiar with Matlab, bash, and Fortran-90

• Competent with object-oriented programming (OOP), primarily in Python

• Competent user of HPC systems, including SLURM. Proficient with parallel processing

• Competent user of Mac and Linux OS