Invited Talks

24/06/2024 - From component to coupled: evaluating the performance of a machine-learned sea ice bias correction scheme in fully-coupled seasonal predictions. Nansen SuperIce Webinar.

14/06/2024 - Towards improving numerical sea ice predictions with data assimilation and machine learning. NOAA Arctic All Hands Meeting.

01/05/2024 - Applications of machine learning to sea ice data assimilation. 10th US Climate Modeling Summit. NOAA Geophysical Fluid Dynamics Laboratory, Princeton USA.

12/04/2024 - Towards a machine-learned sea ice model parameterization from data assimilation increments. Euro-Mediterranean Center on Climate Change (CMCC) Seminar, Bologna Italy.

09/11/2022 - Deep learning of systematic model biases from data assimilation increments. New York University Courant Institute of Mathematical Sciences Guest Seminar Series, New York USA.

27/05/2022 - Machine learning tools for pattern recognition in polar climate science. EGU General Assembly 2022, Vienna Austria, EGU22-12785.

05/03/2020 - Machine learning in climate science. UK Government Digital Service, London UK.


Conference Talks

Gregory, W., Bushuk, M., Zhang, Y., Adcroft, A., Zanna, L. Towards improving numerical sea ice predictions with data assimilation and machine learning. Cross-VESRI Convening 2024, Cambridge UK, 7-10 Jul 2024.

Gregory, W., Bushuk, M., Zhang, Y., Adcroft, A., Zanna, L. Towards improving numerical sea ice predictions with data assimilation and machine learning. EGU General Assembly 2024, Vienna Austria, 14-19 Apr 2024, EGU24-11288.

Gregory, W., Bushuk, M., Zhang, Y., Adcroft, A., Zanna, L. Machine learning for online sea ice bias correction within global ice-ocean simulations. AGU Ocean Sciences Meeting 2024, New Orleans USA, 19-23 Feb 2024.

Zanna, L., Sane, A., Zhang, C., Balwada, D., Perezhogin, P., Gregory, W., Busecke, J., Adcroft, A., Reichl, B., Bushuk, M., Lu, F., Abernathey, R., Shao, A., Fernandez-Granda, C. The New Generation of Global Climate Models Enhanced by Machine Learning. AGU Fall Meeting 2023, San Francisco USA, 11-15 Dec 2023. GC21A-05.

MacEachern, R., Tsamados, M., Gregory, W., Lawrence, I.R., Takao, S. Fast interpolation of satellite altimetry data with probabilistic machine learning and GPU. EGU General Assembly 2023, Vienna Austria, 23-28 Apr 2023, EGU23-17323.

Gregory, W., Bushuk, M., Adcroft, A., Zhang, Y., Zanna, L. Deep learning of systematic sea ice model errors from data assimilation increments. EGU General Assembly 2023, Vienna Austria, 23-28 Apr 2023, EGU23-10351.

Gregory, W., Bushuk, M., Adcroft, A., Zhang, Y., Zanna, L. Using deep learning to predict systematic model error from sea ice data assimilation increments in a fully coupled climate model. AGU Fall Meeting 2022, Chicago USA, 12-16 Dec 2022. C52C-0383.

Bushuk, M., …, Gregory, W., et al. A multi-model comparison of September Arctic sea ice seasonal prediction skill. AGU Fall Meeting 2022, Chicago USA, 12-16 Dec 2022. GC52B-02.

Gregory, W., Lawrence, I.R., Tsamados, M. A Bayesian approach towards daily pan-Arctic sea ice freeboard estimates from combined CryoSat-2 and Sentinel-3 satellite observations. EGU General Assembly 2021, Vienna Austria, 19-30 Apr 2021, EGU21-11462.

Gregory, W., Tsamados, M., Stroeve, J., Sollich, P. Random Walks through Climate Networks: Sea Ice Prediction with Bayesian Inference. EGU General Assembly 2021, Vienna Austria, 4-8 May 2020, EGU20-20595.